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TRANSVERSE VIBRATION OF MULTI MASS
LOADED VARIABLE SECTION BEAMS

UNDER RANDOM EXCITATION
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Dynamic analysis of non-uniform section beams with general end conditions having
arbitrary mass and stiffness distributions and proportional viscous damping distribution
with several arbitrarily located point mass loadings has been presented for non-stationary
random input excitation. Modal analysis has been employed to obtain expressions for
second order response statistics after decoupling the system equations. The natural
frequencies and mode shape functions for such beams are obtained in closed form as an
intermediate step in the outlined approach. Theoretical results for natural frequencies have
been compared with experimental evaluations and with data available in the literature. The
complete approach is illustrated with an example of a cantilever beam subjected to support
excitation.

7 1997 Academic Press Limited

1. INTRODUCTION

Beams are common structural elements in engineering application. Dynamic behaviour of
beams under time dependent loading is important for their performance and design. In
most practical applications, beam geometry varies for economic, structural and
architectural reasons leading to variable mass, stiffness and damping distributions.
Concentrated masses located along the span are also common. Theoretical analysis with
beam models presents an economical option compared to numerical techniques. However,
the governing differential equation of motion of such beams has space dependent
coefficients and imposes complexities in obtaining the general solution. The solution of
these equations for general end conditions has been obtained in closed form only for
specific cases. The general problem has been solved only by numerical techniques which
are computationally intensive.

Analytical solutions for undamped natural frequencies and mode shapes have been
obtained in terms of Bessel function and hypergeometric series for a class of tapered
beams [1–5]. Frobenius’s method has been applied to find eigenparameters for
undamped beams of specific taper [6, 7]. Recently, Abrate [8] has shown that for
non-uniform beams with some restricted taper and end conditions, the differential
equation of motion can be transformed into the equation of motion of a uniform beam.
The two beams then have the same eigenvalues. Analytical solutions for vibration
frequencies of uniform beams with single or several point masses and simple boundary
conditions have been obtained [9–13].

Non-uniform section beam vibration problems have been attempted by various
approximate and numerical techniques such as direct numerical integration, Galerkin,
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Rayleigh–Ritz, finite elements, boundary element and differential quadrature methods
[14–19]. These techniques need intensive computations for accurate results.

Forced vibration of uniform cantilever beams due to deterministic excitation has been
analysed with one or no concentrated mass loadings [20–22]. Approximate techniques have
been used to study the deterministic forced vibrational response of non-uniform beam with
simple support conditions [23, 24].

Tapered and untapered beam flexural vibrations have been studied for stationary
random loading using approximate mode superposition techniques [25–28]. Second order
response statistics of non-uniform flexible structures have been attempted after
discretization to lumped masses under non-stationary uniformly modulated processes
[29, 30].

Closed form analysis for response of arbitrary non-uniform beams carrying arbitrarily
located concentrated masses under random excitation has not appeared in the literature.
The present paper introduces an analytical approach for evaluation of response statistics
of non-uniform section beam carrying concentrated masses at arbitrary locations. The
approach can accommodate general variations of the taper shape and distribution of
mass and stiffness while the distributed viscous damping is proportional to the mass.
The natural frequencies and mode shape functions, also very important in themselves,
are obtained in closed form as an intermediate step and have been utilized to discretize
the equation of motion of the beam in terms of its generalized co-ordinates. The
response statistics have been obtained after decoupling the equations of motion. The
approach effects significant saving in computational effort. The dynamic excitation
process has been considered as non-stationary and is described by the generalized power
spectral density (PSD) function. Experiments have been conducted to determine the
natural frequencies of tapered beams with concentrated masses for clamped–free,
clamped–clamped and pinned–pinned support conditions. Theoretical results for natural
frequencies have been generated for beams with different tapers, concentrated mass
loadings and end conditions. These have been compared with the experimental results
and with those available in literature. Response statistics have been presented for mass
loaded cantilever beams with two types of taper.

2. PROBLEM FORMULATION

2.1.   

A beam subject to dynamic load f(s, t) is shown in Figure 1. The governing equation
of motion for the transverse vibration of the beam can be written as [31]
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where w(s, t) is the transverse displacement of the beam at station s from the origin at
instant t and measured positive upwards from the elastic axis, E is the Young’s modulus
of elasticity of beam material; m(s) is the mass per unit length of the beam; c(s) is the
distributed viscous damping per unit length; Mk (k=1, 2, . . . , p) are the concentrated
masses at stations sk ; d( · ) is the Dirac delta function.

Mass per unit length of the beam can be expressed as

m(s)= rA(s), (2)

in which r is the density of the beam material and A(s) is the cross-sectional area.
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2.2.  

The external excitation f(s, t) on the beam is assumed to be random in time parameter
but deterministic in space. It may, in general, be non-stationary in nature. The excitation
may be represented as

f(s, t)= fm (s, t)+ fR (s, t) (3)

where fm (s, t) is the mean process and fR (s, t) is a zero mean random process. The random
part may be represented in Stieltjes form [32] as

fR (s, t)=g
a

−a

dSfR (s, v) exp (jvt), (4)

where dSfR (s, v) possesses the following property

E[dSfR (s, v)]= mfR (s, v) dv=0,

E[= dSfR (s1, v1) dS*fR (s2, v2) =]=FfRfR (s1, v1; s2, v2) dv1 dv2, (5)

where mfR is the mean and FfRfR is the generalized PSD function of the random process fR .

2.3.     

Equation (1) can be rewritten as
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Equation (6) is equivalent to a forced vibrating system with inertial reaction of the
concentrated masses contributing to the externally applied load. Let the homogeneous
solution be of the form

w(s, t)=W(s) exp (z+jV)t, (7)

where W(s) is the mode shape function, V is the damped natural frequency, z is a factor
related to the damping and j is the imaginary unit equal to z−1. Substitution of this in

Figure 1. Beam model.
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the homogeneous part of equation (6) yields

d2

ds2 $EI(s)
d2W
ds2 %+m(s)(z+jV)2W(s)+ c(s)(z+jV)W(s)=0. (8)

Let the variable moment of inertia, cross-sectional area and damping be expressed by
the following power series

I(s)= I(0)f1(s); f1(s)= s
a

i=0

pisi, c(s)= c(0)f2(s), A(s)=A(0)f2(s)

and

m(s)= rA(0)f2(s); f2(s)= s
a

i=0

qisi. (9)

where I(0), A(0), c(0) are the moment of inertia, cross-sectional area and damping at the
reference section. The coefficients of the series f1(s) and f2(s) can be matched to fit any
desired variation of these properties. The implication of equation (9) is that any form of
variation in stiffness and mass distributions is accommodated by the method. However,
the distribution of the viscous damping has to be proportional to the mass.

Substitution of equation (9) in equation (8) yields

f1(s)
d4W
ds4 +2

df1

ds
d3W
ds3 +

d2f1

ds2

d2W
ds2 − l4f2(s)W(s)=0, (10)

where

l4 =
rA(0)
EI(0)

[(V2 − z2 −Dz)− jV(2z+D)], (11)

with D= c(0)/rA(0).
Introducing a new independent variable x= ls in equation (10) transforms it to

f�1(x)
d4W
dx4 +2

df�1

dx
d3W
dx3 +

d2f�1

dx2

d2W
dx2 − f�2(x)W=0, (12)

where

f�1(x)= s
a

k=0

p̄kxk, f�2(x)= s
a

k=0

q̄kxk, (13)

with

p̄k = pk /lk and q̄k = qk /lk. (14)

A series solution for W(x) in equation (12) is assumed

W(x)= s
a

i=0

c̄ixi. (15)

Using W and its derivatives along with equation (13) in equation (12) and following the
product rule of two series [33], one has

s
a

n=0

(Pn +Qn +Rn −Sn )xn =0, (16)
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where

Pn = s
n

k=0

(n− k+1)(n− k+2)(n− k+3)(n− k+4)p̄kc̄n− k+4, (17)

Qn = s
n

k=0

2(k+1)(n− k+1)(n− k+2)(n− k+3)p̄k+1c̄n− k+3, (18)

Rn = s
n

k=0

(k+1)(k+2)(n− k+1)(n− k+2)p̄k+2c̄n− k+2, (19)

Sn = s
n

k=0

q̄kc̄n− k . (20)

Since equation (16) must be satisfied for every value of x, it implies that the coefficient
of each power of x must vanish. Thus one has

c̄n+4 =
1
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n

k=0
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× (2(n− k+3)p̄k+1c̄n− k+3 + (k+2)p̄k+2c̄n− k+2)}

− s
n

k=1

(n− k+1)(n− k+2)(n− k+3)(n− k+4)p̄kc̄n− k+4%, n=0, 1, 2, . . . .

(21)

Equation (21) gives a recurrence relationship which can be used to determine the
unknown coefficients of the series W except the first four coefficients c̄0, c̄1, c̄2, and c̄3. These
four have to be determined with the help of the beam boundary conditions. All other
coefficients c̄i (i=4, 5, . . . ) can be expressed in terms of the first four basic coefficients.
Thus

c̄i = s
3

k=0

Likc̄k , i=4, 5, . . . , (22)

where Lik = fi (p1, p2, . . . , q1, q2, . . . , l).
Expressing all coefficients of the series in terms of the first four coefficients, it is now

possible to write the mode shape function as
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and in a more compact form,

W(s)= s
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gi (p1, p2, . . . , q1, q2, . . . , l, s)ci . (24)
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The application of appropriate boundary conditions of the beam in equation (24) results
in the eigenvalue problem

Bc= 0 (25)

where the elements of the matrix B contain W and its derivatives evaluated at beam
boundaries. The elements of the vector c contain unknown coefficients c̄0, c̄1, c̄2 and c̄3.
The roots of the characteristic equation give multiple values of l, which upon substitution
in equation (24), yields the vector c. This can now be utilized for evaluation of the mode
shape function W. The damped natural frequencies are obtained from equation (11).

2.4.     

By adopting the mode superposition principle, it is possible to express the beam response
as

w(s, t)= s
a

i=1

Wi (s)qi (t), (26)

where qi are the normal co-ordinates.
Substituting equation (26) in equation (6), multiplying the resulting equation by Wk ,

integrating in the beam domain and invoking the orthogonality condition of normal modes
[31], one has

$q̈i (t)+
1

Mgi
s
p

l=1

MlWi (sl ) s
a

k=1

Wk (s)q̈k (t)%+Dq̇i (t)

× [(V2
i − z2

i −Dzi )− jVi (2z+D)]qi (t)=Fi (t), (27)

where Mgi is the generalized mass and Fj is the generalized force associated with the ith
mode. These are given as,

Mgi =gL

m(s)W2
i (s) ds, Fi (t)=

1
Mgi gL

f(s, t)Wi (s) ds. (28)

Equation (27) shows inertia coupling in the presence of concentrated masses. The
number of normal co-ordinates are theoretically infinite. However, assuming that the
higher order modes do not contribute as significantly as the lower modes, the number of
significant terms in the infinite summation can be truncated to a finite size. Let n be the
number of significant modes. Then n number of coupled equations (27) can be expressed
in matrix notation

Mq̈(t)+Cq� (t)+Kq(t)=F(t), (29)

where M, C, K are system mass, damping and stiffness matrices respectively. Equation (29)
can be expanded to 2n coupled first order equations as

ṗ+Gp=P, (30)

where

p= 8 q̇
– – –

q 9, P= 8 M−1F
– – – – –

0 9 and G= 8 M−1C
– – – – –

−I

M−1K
– – – – –

−0 9. (31)

–
–

–
–

–
–
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I is the identity matrix and 0 is the null vector/matrix. Let the eigenvalues of the matrix
G be a1, a2, . . . , a2n and the corresponding eigenvectors {u}1, {u}2, . . . , {u}2n. The
imaginary part of the eigenvalues gives the damped natural frequencies of the variable
section point mass loaded beam system.

The modal matrix is defined as

U=[{u}1{u}2 . . . {u}2n]. (32)

The eigenvalues are assumed to be distinct. Thus one has [34]

U−1GU=diagonal [a1, a2, . . . , a2n ]. (33)

Using a linear transformation

p=Uv (34)

and condition (33) in equations (30), these can be decoupled as

v̇i (t)+ aivi (t)=Ri (t), i=1, 2, . . . , 2n, (35)

where

Ri = s
n

i=1

ūir s
n

k=1

m̄rkFk (36)

and uir denote elements in the inverse of the matrix U and m̄rk the elements in the inverse
of the matrix M.

2.5.     

2.5.1. General solution
The general solution of equation (35) in Stieltjes integral form may be expressed as

vi (t)=Xoi exp (−ait)+g
a

−a

Hi (v, t) dS(Ri (v)), (37)

where Xoi are constants of integration to be determined from the initial conditions. Hi (v, t)
is the transient frequency response function given by [34]

Hi (v, t)=
1

jv+ ai
[exp (jvt)− exp {−ai (t− to )}]. (38)

It can be seen that as to:−a, for the positive real part of ai , which is the characteristics
of a stable system, Hi (v, t) approaches a limiting value (1/jv+ ai ) exp (jvt).

Using equations (34) and (36) in equation (37), the response in generalized normal
co-ordinates may be expressed as

qm (t)= s
2n

i=1

um+ n,i Xoi exp (−ait)+ s
2n

i=1

um+ n,i s
n

r=1

ūir s
n

k=1

m̄rk

×g
a

−a

Hi (v, t) dS(Ri (v)); m=1, 2, . . . , n. (39)
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2.5.2. Response statistics
The mean and covariance for the generalized normal co-ordinates are given by

mqm (t)=E[qm (t)], (40)

Kqiqk (t1, t2)=E[{qi (t1)− mqi (t1)}{qk (t2)− mqk (t2)}*]. (41)

Substituting equation (39) in equation (40), one has

mqm (t)= s
2n

i=1

um+ n,iXoi exp (−ait)+ s
n

i=1

um+ n,i s
n

r=1

uir s
n

k=1

mrkIik (t), m=1, 2, . . . , n,

(42)
where

Iik (t)=g
a

−a

Hi (v, t)E[dSFk (v)]. (43)

Using the expression for the kth generalized force Fk from equation (28), the above integral
becomes

Iik (t)=
1

Mgk g
a

−a g
L

0

Hi (v, t)E[dSf (s, v)]Wk (s) ds

=
1

Mgk g
a

−a g
L

0

Hi (v, t)m*fm (s, v)Wk (s) ds dv, (44)

where m*fm is the Fourier transform of the mean excitation fm and is defined by

m*fm (s, v)=
1
2p g

a

−a

fm (s, t) exp (−jvt) dt. (45)

Substitution of equations (38) and (45) in equation (44) yields

Iik (t)=
1

Mgk g
a

−a g
L

0

fm (s, t)$ 1
2p g

a

−a

1
jv+ ai

exp (jv(t− t)) dv%Wk (s) ds dt.

After evaluation of the inner integral over v, Iik takes the form

Iik (t)=
1

Mgk g
a

−a g
L

0

fm (s, t)Wk (s) exp (−ai (t− t)) ds dt. (46)

Considering the fact that the excitation is not present for tQ 0 and is available only up
to tE t, lower and upper limits of the time integral may be changed to 0 and t.

Using equations (39) and (42) in equation (41), the expression for the covariance
response can be put as

Kqiqk (t1, t2)= s
2n

l=1

s
n

r=1

s
2n

p=1

s
n

a=1

s
n

b=1

s
n

w=1

ui+ n,l ūlrm̄rauk+ n,pūpbm̄bw{Ia,b (t1, t2)− Ila (t1)Ipb (t2)},

i, k=1, 2, . . . , n, (47)
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where

Ia,b (t1, t2)=g
a

−a g
a

−a

Hl (v1, t1)H*p (v2, t2)E[dSFa (v1) dS*Fb (v2)]. (48)

Substituting the expression for the generalized forces Fa and Fb from equation (28), the
above integral can be expressed as

Ia,b (t1, t2)=
1

Mga

1
Mgb g

a

−a g
a

−a g
L

0 g
L

0

Hl (v1, t1)H*p (v2, t2)

×FfRfR (s1, v1; s2, v2)Wa (s1)Wb (s2) ds1 ds2 dv1 dv2. (49)

Equations (42) and (47) give expressions for the mean and covariance of the generalized
normal co-ordinates. These can be utilized to obtain the response characteristics of the
beam once the two basic integrals Iik and Ia,b are evaluated. These integrals can be obtained
if the characteristics of the input process is known.

2.5.3. Example of cantilever with support excitation
In order to illustrate the approach for response statistics evaluation, an example of a

cantilever beam with concentrated mass loadings is taken in which dynamic loading is
induced due to its support excitation. Let z(t) be the translatory motion of the support,
hence

f(s, t)=−{m(s)z̈(t)+ c(s)ż(t)}, (50)

where the base displacement z(t) can be written as

z(t)= zm (t)+ zR (t), (51)

with zm and zR being the mean and zero random parts respectively of the process z(t).
Using equation (51), the mean and random part of the exciting force can be expressed

as

fm (s, t)=−{m(s)z̈m (t)+ c(s)żm (t)}, (52)

fR (s, t)=−{m(s)z̈R (t)+ c(s)żR (t)}. (53)

Substitution of equation (52) in equation (46), yields

Iik (t)=g
a

−a

{Akz̈m (t)+Bkżm (t)} exp (−ai (t− t)) dt, (54)

where

Ak =−
1

Mgk g
L

0

m(s)Wk (s) ds, Bk =−
1

Mgk g
L

0

c(s)Wk (s) ds. (55)

Further the PSD of the excitation can be written as

ffRfR (s1, v1; s2, v2)= [m(s1)m(s2)v2
1v

2
2 + j{m(s2)c(s1)v1v

2
2 −m(s1)c(s2)v2

1v2}

+ c(s1)c(s2)v1v2]FzRzR (v1, v2). (56)
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Substituting equation (56) in equation (49) and using equation (55), the integral Ia,b

becomes

Ia,b (t1, t2)=g
a

−a g
a

−a

Hl (v1, t1)H*p (v2, t2){AaAbv
2
1v

2
2 + j(v2

1v2AbBa −v2
2v1AaBb )

+BaBbv1v2}FzRzR (v1, v2) dv1 dv2. (57)

It is seen from equations (54) and (57) that evaluation of the integrals Iik and Ia,b need the
description of zm and fzRzR .

Any suitable deterministic function can be chosen to represent the mean zm . In the
present study it is assumed as a sinusoidal function of amplitude z0 and frequency v0 as
a generic term in a Fourier series expansion. Thus zm is

zm (t)= z0 sin v0t. (58)

It is known that the characteristics of the excitation process depends on the source of
its origin. Standard forms of PSD are available in the literature for most known types of
excitations. The following PSD [34] has been taken for the base excitation, assumed
stationary, in this illustrative example

FzRzR (v)= s2 exp (−v2/4b2
1 )/2zpb1, (59)

where s is the standard deviation of zR and b1 is a correlation constant.
As the random process zR (t) is stationary, one can write

FzRzR (v1, v2)=FzRzR (v1)d(v1 −v2). (60)

Substituting equation (58) in equation (54), the integral Iik is evaluated as

Iik (t)=
z0v

2
0

a2
i +v2

0 $Bk

v0
{ai cos v0t+v0 sin v0t− ai exp (−ait)}

−Ak{ai sin v0t−v0 cos v0t+v0 exp (−ait)}%. (61)

Using equations (59) and (60) in equation (57) and evaluating the integral in the complex
domain with the help of Cauchy’s Residue theorem, one has

Ia,b (t1, t2)= (zps2/b1){exp (−al =t1 − t2 =)− exp (−alt1 − apt2)}

×exp {a2
l /4b1}{(AaAba

4
l +(AbBa −BbAa )a3

l −BaBba
2
l )/(al + ap )}.

(62)

Utilizing equations (61) in equation (42), the mean displacement mqm (m=1, 2, . . . , n)
can be obtained. The mean velocity response mq̇m can be found by substituting um for um+ n

in the expression for mqm . The mean acceleration is determined by differentiating mq̇m with
time.

Substitution of equations (62) and (61) in equation (47) yields the covariance of the
displacement. The velocity covariance Kq̇iq̇k (t1, t2) is known by substituting uil and ukp for
ui+ n,l and uk+ n,p respectively in the expression for Kqiqk (t1, t2). The covariance of acceleration
is determined by differentiating the covariance of velocity successively with respect to t1

and t2.
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T 1

Non-dimensional natural frequency (V2m0L4/EI0)1/2 of linearly tapered beams with no
concentrated mass loadings

Mode Sequence
End Taper Result ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Cond. tb , th Source 1 2 3 4 5

Cl–Fr 0·2, 1·0 * 5·3973 25·6555 65·7473 125·2584 204·3782
[5] 5·3969 25·656 – – –
[6] 5·3976 25·6558 65·7470 – –
[16] 5·3976 25·6560 65·7470 125·2600 204·5500

1·0, 0·2 * 4·2920 15·7425 36·8848 68·1160 109·9079
[5] 4·2926 15·7420 – – –
[16] 4·2925 15·743 36·886 68·144 110·06

0·2, 0·2 * 6·1965 18·3852 39·8335 71·2413 112·8328
[5] 6·1972 18·384 – – –
[16] 6·1964 18·386 39·8370 71·2880 113·3300

Fr–Cl 0·2, 1·0 * 2·1709 18·9589 58·5574 117·5956 196·5318
[6] 2·1709 18·9589 58·5574 – –

Cl–Cl 0·2, 1·0 * 21·4707 60·3316 119·3342 198·1076 295·2434
[6] 21·4707 60·3321 119·3396 – –

1·0, 1·2 * 24·5634 67·7044 132·7371 219·2361 324·8328
[8] 24·5634 67·7048 132·7240 – –

Cl–Pn 0·2, 1·0 * 16·5075 51·0248 105·4035 179·0118 272·0306
[6] 16·5074 51·0250 105·4009 – –

1·0, 1·2 * 16·5029 54·4611 114·0600 195·1918 296·6478
[8] 16·5029 54·4614 114·0516 – –

Pn–Cl 0·2, 1·0 * 13·4846 47·7671 101·8402 175·7147 268·8754
[6] 13·4845 47·7672 101·8389 – –

Pn–Pn 0·2, 1·0 * 9·6722 39·5851 89·0714 158·2421 246·7976
[6] 9·6721 39·5851 89·0704 – –

1·0, 1·2 * 10·8267 43·3565 97·5357 173·3681 271·4061
[16] 10·8270 43·357 97·535 173·38 271·41

Note: * represents the results from the present work.

3. RESULTS AND DISCUSSIONS

The analysis aims at evaluating the response statistics for mass loaded variable section
beams. Remembering the importance of the natural frequencies and mode shapes in
understanding the behaviour and performance of the structures, the results are presented
in two sections—(a) beam natural frequencies and mode shapes, and (b) response statistics.

3.1.      

Theoretical results have been obtained with the present approach for natural frequencies
and mode shapes for different end conditions of beams with various tapers and point mass
loadings. Some of these results are compared with results available in the literature and
obtained experimentally.

3.1.1. Comparison with results available in literature
The analytical results from the present approach have been compared with published

results and are presented in Tables 1, 2 and 3. The natural frequency is
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T 2

Non-dimensional natural frequency (V2m0L4/EI0)1/2 of linearly tapered cantilevered beams
with concentrated mass loadings

Mode Sequence
Taper Result ZXXXXXXXXXXXXXXCXXXXXXXXXXXXXXV
tb , th Source 1 2 3 4 5

(a) Single concentrated mass mr =0·5, sr =0·3
1·0, 1·0 * 3·4513 17·4415 47·3072 113·8837 196·6725

[16] 3·4512 17·430 47·302 113·83 196·35

mr =0·5, sr =1·0
* 2·0156 16·9036 51·7071 106·1008 180·2362

[16] 2·0163 16·901 51·701 106·06 180·18
[20] 2·0163 16·901 51·701 106·06 180·12

(b) Three equal concentrated masses mr =0·01; sr =1/3, 2/3, 1·0
* 3·4256 21·3949 59·4744 118·5629 194·3881

[13] 3·4262 21·3943 59·4734 118·5838 194·4162

mr =0·1; sr =1/3, 2/3, 1·0
* 2·8406 17·5515 47·7382 109·3044 171·7031

[13] 2·8406 17·5502 47·7528 109·2080 171·6661

mr =0·2; sr =1/3, 2/3, 1·0
* 2·4460 15·1708 41·1835 105·3713 162·1602

[13] 2·4460 15·1688 41·1555 105·3552 162·1501

Note: * represents the results from the present work.

T 3

Non-dimensional frequency parameter (V2m0L4/EI0)1/2 of parabolically tapered beams

Mode Sequence
End Taper Result ZXXXXXXXXXXXXCXXXXXXXXXXXXV
Cond. tb , th Source 1 2 3 4 5

Cl–Fr 0·2, 1·0 * 5·3069 25·4162 65·2273 125·0085 204·1635
[16] 5·3301 25·4350 65·4870 125·0300 204·4500

1·0, 0·2 * 3·1658 12·0357 28·3321 53·1875 86·0057
[16] 3·1790 12·0850 28·9321 53·5540 86·7310

0·2, 0·2 * 4·4116 13·8623 30·2585 55·2786 89·1842
[16] 4·4454 13·9330 30·9930 55·9614 89·6730

Note: * represents the results from the present work.

non-dimensionalized to frequency number as (V2m0L4/EI0)1/2, where m0 and I0 refer to the
s=0 end. The larger end is mentioned first in describing the beam end conditions. The
ratios of the end widths b(L)/b(0) and end heights h(L)/h(0) are termed as taper ratios
and denoted as tb and th respectively. The ratio of the concentrated mass to the beam mass
is denoted by mr and concentrated mass location as a fraction of the beam length is denoted
by sr .

The first two tables are for linearly tapered undamped beams. Table 1 shows the
comparison of frequency numbers of beams with no concentrated mass loading and
various end conditions. Table 2 is for beams with one or more concentrated masses.
Published results are shown for various references indicated in the tables. Frequency
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Figure 2. Block diagram of experimental set up.

numbers for parabolically tapered beams are presented in Table 3. Beam sections similar
to reference [16] have been selected for this table.

Comparison shows good agreement between the analytical values obtained and
published results. The agreement is better for the lower modes, which is as expected.

3.1.2. Comparison with experimental results
Experiments have been conducted on variable section beams with three classical support

conditions: clamped–free, pinned–pinned and clamped–clamped. A schematic diagram for
the experimental set up is shown in Figure 2.

The clamped end condition was simulated by bolting the beam end between two mild
steel plates by six bolts of 6 mm diameter. The size of the base plate was
100 mm×100 mm×10 mm and was welded to a heavy frame. The cover plate had a size
of 100 mm×100 mm×6 mm. The pinned end condition was simulated with the help a
fixture carrying two shafts vertically above one another. Each shaft was mounted with
three sets of ball bearings. The lower shaft was held in position while the upper shaft could
be raised or lowered with the help of a screw arrangement. The beam end was
accommodated between the upper and the lower ball bearings. The upper shaft was
lowered to just make bearing contact with the top of the beam surface. This allowed
freedom of rotation to the beam end with no vertical displacement. The arrangement was
housed in a rigid frame constructed with 150 mm×75 mm×10 mm mild steel channel
section.

The beam was excited harmonically by an electromagnetic shaker (capacity 62·5 kg)
through a power amplifier. The power amplifier used has a built-in sinusoidal waveform

T 4

Experimental validation of natural frequency (tb =0·4, th =1·0)

Natural frequencies (Hz)
Support Source of ZXXXXXXXCXXXXXXXV

Specimen No. condition Result f1 f2 f3

B1 Cl–Fr Theory 27·62 187·79 444·69
Experiment 27·00 190·00 451·00

Pn–Pn Theory 103·33 325·00 770·00
Experiment 107·00 337·00 790·00

B2 Cl–Cl Theory 46·74 130·05 250·18
Experiment 43·00 125·00 241·00



.   .164

generator which provides a low harmonic content, variable amplitude, variable frequency,
sine wave output. The frequency of the wave can be adjusted from 1 Hz to 20 kHz in seven
overlapping ranges. In the experiment, the driving frequency was monitored through the
power amplifier and was varied to match the resonant frequency. Accelerometers weighing
0·0296 kg were mounted at planned locations on the beam and were treated as
concentrated masses. The output signals from the accelerometers were passed through a
signal conditioner and observed in an oscilloscope to identify the event of resonance and
the corresponding frequency was recorded. The oscilloscope used has a dual trace plug-in
unit having a sensitivity of 0·005 to 2 V/mm.

Two different specimens of aluminum (r=2744 kg/m3, E=70 GPa) beam have been
tested. Details of the specimens and their support conditions are:

Specimen B1: L=0·3 m, b(0)=0·05 m, h(0)=0·00325 m, b(L)=0·02 m. End
conditions: clamped–free and pinned–pinned. Concentrated mass: M1 =0·0296 kg,
s1 =0·15 m.

Specimen B2: L=0·60 m, b(0)=0·1 m, h(0)=0·00385 m, b(L)=0·04 m. End
conditions: clamped–clamped; Concentrated masses: M1 =M2 =M3 =M4 =0·0296 kg;
concentrated mass locations: s1 =0·135 m, s2 =0·295 m, s3 =0·426 m, s4 =0·58 m.

The experimental values of the first three natural frequencies are given along with the
theoretical value in Table 4. These show that the first three natural frequencies match
within acceptable limits for clamped–free and clamped–clamped conditions. However, for
the simply supported condition the matching is not so good as in the other cases. The
discrepancies may be due to the limitations of the experimental set not being able to
provide truly clamped and pinned end supports. The disagreement is greater for the pinned
ends case as the restraint against rotation at the ends was not completely eliminated by
the fixtures.

3.1.3. Variable section beams
The proposed approach is used to obtain the natural frequencies and mode shapes for

variable section cantilevered beams as chosen in the illustrative examples. Numerical
results are generated with the following values of the beam parameters: r=2744 kg/m3,
E=70·0 GPa, L=0·60 m, b(0)=0·10 m, h(0)=0·00385 m, c(0)/rA(0)=0·56 s−1.

The boundary conditions of the beam are assumed as clamped at s=0, and free at
s=L. Two cases of variation of beam width and depth have been considered. These
variations are chosen to represent a linear and non-linear convex (parabolic) taper. The
width b(s) at a distance s from the origin, can be written as

b(s)= b(0)[1−w1(s/L)] (linear), b(s)= h(0)[1−w1(s/L)2] (parabolic), (63)

in which w1 =1− b(L)/b(0). Similarly the thickness of the beam can be expressed by
appropriately replacing b(s) by h(s), b(0) by h(0), b(L) by h(L) and w1 by w2 where
w2 =1− h(L)/h(0).

The polynomial functions f1(s) and f2(s) for the stiffness, mass and damping variation
along the span are expressed as

(i) Linear

f1(s)=1−(w1 +3w2)(s/L)+3(w2
2 +w1w2)(s/L)2

− (w3
2 +3w1w2

2 )(s/L)3 +w1w3
2 (s/L)4,

f2(s)=1−(w1 +w2)(s/L)+w1w2(s/L)2. (64)
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Figure 3. Effect of taper ratio on frequency number (V2m0l4/EI0)1/2. (a) width taper (tb =1); (b) height taper
(th =1); (c) width and height taper (tb = th). Key: ——, Linear; ----, Parabolic.

(ii) Parabolic

f1(s)=1−(w1 +3w2)(s/L)2 +3(w2
2 +w1w2)(s/L)4

− (w3
2 +3w1w2

2 )(s/L)6 +w1w3
2 (s/L)8,

f2(s)=1−(w1 +w2)(s/L)2 +w1w2(s/L)4. (65)

The natural frequencies are obtained for the following forms of tapered cross-sections—
width varying with thickness constant, thickness varying with width constant and width
and thickness varying simultaneously. Loading is achieved by four concentrated masses
M1, M2, M3 and M4 each equal to 0·0296 kg located at 0·225L, 0·490L, 0·710L and 0·980L
respectively. With damping present, the eigenvalues ai are complex and appear in conjugate
pairs. The real part of ai gives a decaying factor associated with each mode and magnitude
of the imaginary part gives the corresponding damped natural frequency.
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3.1.3.1. Effect of taper ratio on natural frequencies. Non-dimensional damped natural
frequencies of a cantilevered beam in the first five modes for different combinations of
taper are plotted against taper ratios and shown in Figure 3.

(a) Width taper, height constant
Figure 3(a) reveals the variation of the first five nodes with the two types of taper in

width only. The fundamental frequency of the beam is seen to decrease with the increase

Figure 4. Effect of taper ratio on mode shape for (a) linear taper, (b) parabolic taper. Key: ----, tb =0·2;
. . . . . . , tb =0·4; —.—.—.—, tb =0·6; —..—..—..—, tb =0·8; ——, tb=1·0.
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in taper ratio for linear as well as parabolic shapes. At lower taper ratios, the parabolically
tapered beam has slightly lower natural frequencies. In the second mode, for the
parabolically tapered beam, the modal frequency gradually falls with the increase in taper
ratio. The modal frequency of the linearly tapered beam shows low sensitivity to taper ratio
with a small rise in value in the middle of the range considered. The third and fourth modal
frequencies of the beam show increasing values with taper ratios for both linear and
parabolically tapered beams. A similar pattern is observed for the linearly tapered beam
in the fifth bending mode. Parabolically tapered beam, however, shows a different
behaviour. The modal frequency is seen to decrease first and then increase with taper
ratios, achieving a minimum value close to a taper ratio of 0·5. Except for the first mode,
the natural frequency of the parabolically tapered beam is found to be higher in the first
five modes considered.

(b) Height taper, width constant
The variation of the first five frequency numbers with taper in height and width constant

is shown in Figure 3(b). In the case of the first mode, the fundamental frequency for the
parabolic tapered beam decreases strongly with an increase in value of the taper ratio.
However, the linearly tapered beam is almost insensitive to taper ratio, showing a very
small decrease with increased taper ratio. Second, third, fourth and fifth modal frequencies
are seen to increase with an increase in taper ratio. The natural frequency for the parabolic
tapered beam is seem to be higher than the linearly tapered beam for all the modes
considered.

(c) Height and width taper
The variation of modal frequencies when both width and height taper simultaneously

in the same proportion, are presented in Figure 3(c). The first modal frequency is seen to
decrease with an increase in taper ratio for both types of beams showing non-linear trends.
The second, third, fourth and fifth modal frequencies are seen to increase with taper ratios.
This is observed for both linear and parabolically tapered beams.
3.1.3.2. Effect of taper ratio on mode shape. The shape function W(s) for different values
of tapered ratios for a cantilevered beam are shown in Figure 4. To avoid an excessive
number of graphs, only the width taper has been considered to illustrate the displaced
configuration of the beam in its natural modes. Five taper ratios (tb =0·2, 0·4, 0·6, 0·8,
1·0) have been considered with linear and parabolic taper shapes. Mode shapes are
normalized with absolute value of corresponding tip deflections. Figure 4(a) shows the
mode shape with a linearly tapered width while Figure 4(b) presents results for the
parabolically tapered shape. The clamped end is always a nodal point for the cantilever
beam. In the first mode, no significant change is observed for the displacement pattern with
change in taper ratio. As taper ratio increases the nodal point has a tendency to shift
towards the free tip and maximum displacement in the mode shape increases for all the
modes studied. The shift in the node point location becomes less prominent with increased
modal number. The basic behaviour of the displacement function for the parabolic beam
seems to follow the same pattern as the linearly tapered beam. The shift in the node point
is greater for the parabolically tapered beams.
3.1.3.3. Effect of mass location on natural frequency. The effect of location of a single
concentrated mass (M1 =0·1184 kg) on the non-dimensional natural frequency number of
the tapered beam is shown in Figure 5 for different combinations of taper. Only one value
of the taper ratio is considered to illustrate the results.

In Figure 5(a), the first five modal frequencies of the beam tapered in width only are
shown for linearly and parabolically tapered beams with taper ratio tb =0·4. In the first
mode, for both types of taper, the frequency increases as the point mass moves from tip
towards the support. In the second, third, fourth and fifth modes, frequency shows a strong
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Figure 5. Effect of mass location on frequency number (V2m0l4/EI0)1/2 for (a) width taper (th =1); (b) height
taper (tb =1); (c) width and height taper (tb = th). Key: as for Figure 3.

dependence on the position of mass, but no regular pattern can be observed. Both types
of taper in general show a similarity in frequency behaviour. In the first mode, the natural
frequency of the parabolically tapered beam is higher than of the linearly tapered beam
when the mass is near the tip and is lower with the mass closer to the root. In all other
cases, for most of the location of concentrated mass, the natural frequency of parabolically
tapered beam seems to be higher than for the linearly tapered beam.

Figure 5(b) presents the variation of frequency numbers for the beam tapered in height
only with width constant. The first mode frequency decreases as the mass travels towards
the tip. Second, third, fourth and fifth mode frequency numbers in linearly tapered beams
do not reveal any regular pattern of variation. The parabolically tapered beam follows a
similar pattern in all the higher modes except in the fifth mode. In the fifth mode, the modal
frequency of the parabolically tapered beam decreases only marginally as the mass is
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moved towards the tip. For every location of concentrated mass, the parabolically tapered
beam shows a higher value of natural frequency in the first five modes considered.

The simultaneous variation of modal frequency of the beam with identical width and
height taper is shown in Figure 5(c) for various locations of a single concentrated mass.
Linear as well as parabolically tapered beams show decreasing values of the fundamental
frequency with the shifting of the mass towards the free end. Second, third, fourth and
fifth frequency numbers do not show any predictable pattern of variation with the location
of the mass for the linearly tapered beam. Parabolically tapered beam shows more or less
similar behaviour in the second, third and fourth modes. However, in the fifth mode, no
significant change in frequency with the change in location of the mass can be observed.

3.2.  

The response-time history of the first three normal co-ordinates of a cantilever beam
are shown in Figures 6 and 7. The curves are plotted with three different values of taper
ratios, tb =0·2, 0·4, 0·6 and th =1. The input characteristics are z0 =0·05 m,
v0 =1·25 rad/s, s=0·015 m, b1 =8·0.

3.2.1. Mean response
Figure 6 presents the mean response of the first three normal co-ordinates for a linearly

tapered cantilever beam. The steady state pattern of response under sinusoidal mean input
is reflected in displacement, velocity and acceleration time histories. Mean displacement
at the start of the motion is higher than the steady state value. Mean velocity shows that
amplitude builds up gradually to attain a steady state pattern of oscillation. Response with
different values of taper ratio shows that magnitude increases with an increase in taper
ratio. This is expected as with an increase in taper ratio, the dynamic stiffness of the beam
decreases.

The mean response of the second normal co-ordinate is seen to follow the same pattern
as the first mode. However, it has significantly lower magnitude than the first mode

Figure 6. Mean response of a linearly tapered beam for (a) displacement, (b) velocity, (c) acceleration. Key:
——, tb=0·2; . . . . . . , tb =0·4; —.—.—, tb =0.
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Figure 7. Mean response parabolically tapered beam for (a) displacement, (b) velocity, (c) acceleration. Key:
as for Figure 6.

response. The mean displacement, velocity and acceleration of the third normal
co-ordinate has a similar pattern as the first and second modes. The response magnitude
is lower in comparison to the second mode. However, the response shows little change in
magnitude with change in the taper ratios.

Figure 8. Response variance of a linearly tapered beam for (a) displacement, (b) velocity, (c) acceleration. Key:
as for Figure 6.
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Figure 9. Response variance of a parabolically tapered beam for (a) displacement, (b) velocity, (c) acceleration.
Key: as for Figure 6.

The mean response of the parabolically tapered beam is shown in Figure 7 for its first
three normal co-ordinates. The behaviour is found to be similar to that of the linearly
tapered beam. First and second mode response magnitudes are seen to be higher in
comparison to the linearly tapered beam. However, no significant change in response
magnitude can be observed in the two beams for the third normal co-ordinates.

3.2.2. Response variance
Variance of response quantities for the linearly tapered beam is presented in Figure 8,

and that for the parabolically tapered beam in Figure 9.
Displacement, velocity and acceleration variances of the first normal co-ordinate for the

linearly tapered beam shows that the response rises to attain a steady value. The steady
state value is much higher for the beam with a higher value of taper ratios.

For the second normal co-ordinate, displacement variance for the beam with higher
taper ratio fluctuates in the early stage. These fluctuations die out to attain an asymptotic
value. Displacement variance is found to be higher for higher taper ratios. For the second
normal co-ordinate, the variance of velocity indicates a different pattern. Fluctuations are
observed in the early period for all the taper ratios considered. Fluctuations are more
prominent in the case of higher taper ratios. The magnitude is seen to increase with taper
ratio but the difference becomes small in the two higher taper ratios used. Acceleration
variance in the second mode shows an initial high value with strong fluctuations which
decreases to attain a low level of steady state value.

Variance of displacement, velocity and acceleration response in the third normal
co-ordinate follow the trend similar to the second. Beams with higher taper ratios are seen
to have a higher response variance. The magnitude of the variance decreases with the
increase in the normal co-ordinate mode number.

Response variances of the parabolically tapered beam for the first three normal
co-ordinates are shown in Figure 9. The behaviour, in general, is found to be similar to
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that of the linearly tapered beam. The magnitudes are marginally higher compared to the
corresponding linear taper beam response.

A comparison of mean and variance for all the normal co-ordinates shows that the first
mode response is considerably higher than that of the higher modes. This indicates that
inclusion of only the first few modes in the response calculation is appropriate.

4. CONCLUSIONS

An analytical approach has been outlined to study the free and forced vibrational
characteristics of a non-uniform beam carrying several concentrated masses. Stationary as
well as non-stationary random input can be handled by the approach. The beam mass and
stiffness variations can be of a general nature with damping proportional to mass
distribution. The approach is applicable to any type of boundary conditions. Comparison
with experimental results and data available in the literature validates the present
approach. The approach is illustrated with a cantilever beam with support excitation. Some
conclusions drawn from the study are

(1) The natural frequency of the non-uniform beam is sensitive to change in the taper
ratio and magnitude and location of the concentrated mass loading present in the beam.

(2) Forced response is found to be influenced not only by the input characteristics but
also by the change in the beam profile.

(3) The polynomial mode shape function derived will be of much help in the analysis
of non-uniform flexible structures modelled by finite beam elements. The use of the
non-uniform beam shape functions instead of the traditional uniform beam functions in
the finite element analysis is expected to produce rapid convergence with a smaller number
of elements.
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